SYNTHESIS OF PI(3,4,5)P3 WITH UNSATURATED AND SATURATED FATTY ACID CHAINS # Yutaka Watanabe* and Mitsunobu Nakatomi Department of Applied Chemistry, Faculty of Engineering, Ehime University, Matsuyama 790-8577, Japan Received 22 April 1999; accepted 21 June 1999 **Abstract:** Synthesis of three PI(3,4,5)P3s, sn-1-O-stearoyl-sn-2-O-arachidonoyl, stearoyl-linolenoyl, and distearoyl phosphatidyl-myo-inositol 3,4,5-trisphosphate with the natural configuration for the arachidonoyl version was established by employing 9-fluorenylmethyl-protected phosphate derivatives. © 1999 Elsevier Science Ltd. All rights reserved. Keywords: phosphatidyl inositol, phospholipid, natural product, protecting group In various intracellular signals relating to cell proliferation, oncogenesis, insulin action, and so on, 1 phosphatidylinositol-specific 3-kinases (PI 3-kinases), 2 the activation of which is closely associated with receptors of growth factors linked to the activation of tyrosine kinase, 3 have been recognized to play a key role. They produce 3-phosphorylated phosphoinositides, phosphatidylinositol 3,4,5-trisphosphate, phosphatidylinositol 3,4-bisphosphate, and phosphatidylinositol 3-phosphate, respectively, from the corresponding D-3-free phosphatidylinositols. There have been reported several papers concerning synthesis of PI(3,4,5)P3. In most of the papers, were prepared the analogs bearing saturated fatty acid chains such as stearic, ⁴⁻⁶ palmitic, ⁷ and octanoic acid. ⁸ Saturated analogs can be prepared much more easily than the unsaturated version, since the former synthetic procedures allow the use of common benzylic protecting groups which are removed by hydrogenolysis. Very recently, natural stearoyl-arachidonoyl-PI(3,4,5)P3 have been synthesized by Gaffney and Reese, ⁹ and us. ¹⁰ Our synthetic study on unsaturated PI(3,4,5)P3 is reported here in detail. #### Results and Discussion The synthetic process to unsaturated- and saturated-PI(3,4,5)P3 is summarized in Scheme 1. The present synthetic route is essentially the same as that for the racemic PI(3,4,5)P3 reported in 1994.⁴ As described below, choice of the protecting group for phosphoric esters in the unsaturated-lipid synthesis was most crucial, and a novel one, 9-fluorenylmethyl (Fm), was found to be promising for our purpose.¹¹ When *myo*-inositol is used as the starting material, optical resolution at an adequate stage is essential since it is a *meso*-compound. We employed so far two resolution procedures to obtain an optically active 3,4-O-disiloxanyl derivative. Enantio- and regioselective acetylation of DL-1,2-O-cyclohexylidene-*myo*-inositol 17 at the 3-position using Lipase CES from *Pseudomonas sp.* (Amano Pharmaceutical Co. Ltd.) as a biocatalyst, ¹² deacylation, and disiloxanylation gave D-1 with 98% ee. A chemical method derivatizing to diastereomers with an appropriate chiral auxiliary is frequently more reliable because 1) optically pure substance can be obtained; 2) a chiral chemical is available constantly whereas an uncommon enzyme is difficult to obtain. From these standpoints, we had previously derived **DL-1** to *l*-menthyloxyacetic ester ¹³ **18a** and its silyl derivative **18b** was separated to two diastereomers. However, careful treatment of **18a** was required to prevent the acyl migration to the 5-position. To avoid such a problem, a more bulky *O*-acetylmandelic ester (2)^{14,15} was employed this time and its diastereomeric silyl ethers **3** were readily separated by flash column chromatography to afford **D-3** (36%) and **L-3** (42%), although their R_f values [0.25 and 0.30 (AcOEt/n-C6H₁₄, 1:12)] were close. Optical purity of each diastereomer was confirmed by NMR, TLC, and HPLC (SiO₂) analysis. The silylation was accomplished by the reaction with triethylsilyl chloride in the presence of DMAP and ethyl(diisopropyl)amine as a bulky tertiary ## Scheme 1 amine, while a less bulky amine, triethylamine, accelerated the migration of the acyl group in 2. The chiral auxiliary from **D-3** was removed by the reaction with hydrazine at low temperature (0 °C or lower) to afford the 6-O-free derivative 4. Levulinoylation of 4 followed by removal of the silyl functions gave triol 6. In the next phosphorylation, various phosphate protecting groups were examined. When benzyl phosphate, which has been almost invariably employed in saturated PIPs syntheses, was used, various deprotection trials based on trimethylsilyl bromide and Na in liquid NH3 to remove the benzyl groups from the unsaturated acyl phosphatidylinositol phosphates at the final stage were all unsuccessful. We then searched for protecting groups which may be removed by a \(\beta \)-elimination mode. Deprotection of the 2-(trimethylsilyl)ethylprotected PIP3 derivative 19 failed. The 2-cyanoethyl⁹ and 2-(p-nitrophenyl)ethyl¹⁶ esters corresponding to 8 were also not suitable for our purposes. In the former case, phosphate migration occurred during removal of the cyclohexylidene group. In the latter, the same process was resistant to various acidic reaction conditions. We turned our attention to finding a new phosphate protecting group, and Fm was found to be promising. 11 Caruthers and co-workers used this group to obtain phosphorodithioates 21 via deprotection of the transient monofluorenylmethyl esters 20 with concentrated ammonia. ¹⁷ Since their report, Fm has not been utilized for phosphate protection. Thus, triol 6 was transformed quantitatively via the phosphoramidite procedure using di-(9-fluorenylmethyl) N,N-diisopropylphosphoramidite 7 to 3,4,5-trisphosphate 8, which was then converted to 1,2-diol 9. Since 1,2-diol derivatives are readily available from the parent *myo*-inositol, selective phosphorylation of them at the 1-position is a convenient procedure for the synthesis of phosphatidylinositol derivatives. ¹⁸ Such a useful strategy was realized by the reaction of a 1,2-diol with a phosphite in the presence of pyridinium tribromide, and the methodology has been demonstrated in the synthesis of phosphatidylinositol phosphates. However, its application to 9 failed, while the benzyl-protected triphosphate derivative was phosphorylated albeit in low yield. ⁴ Diol 9 was consequently transformed into the 2-O-protected derivative 13 via 1-O-silyl ether 11. Thus, temporary protection of the equatorial hydroxyl group in 9 with the triethylsilyl group was achieved in 75% (87% yield based on the recovered starting material) by using a highly reactive silylating reagent, triethylsilyl triflate, and a bulky base, 2,6-di-t-butyl-4-methylpyridine 10. Usual procedures using triethylsilyl chloride yielded a small amount of 1,2-disilyl ether 22 together with a large amount of the starting material (run 3 in Scheme 2), and none of the desired 1-monosilyl ether 11 was observed. A combination of TESOTf and lutidine also induced silyl migration to finally furnish a serious amount of 22 (run 2). These observations indicate that the silyl group in 11 first formed was extraordinarily prone to migrate to 2-O-silyl ether, which was then silylated resulting in the formation of 22. The sequential 2-chloroacetylation and desilylation of 11 were accomplished by common procedures to give 13 in high yield. Phosphitylation of 13 with 2-O-arachidonoyl-1-O-stearoyl-sn-glycerol 2-cyanoethyl N,N-diisopropylphosphoramidite 14a, which was derived from the corresponding 1,2-diacyl glycerol and chloro(2-cyanoethyloxy)diisopropylaminophosphine, was followed by oxidation with t-butyl hydroperoxide to afford smoothly 1-O-phosphate 15a in good yield. In a similar manner, other 1-phosphates with the racemic inositol moiety, 15b and 15c, were obtained by using the corresponding (stearoyl-linolenoyl)- and distearoylglycerol phosphoramidite, 14b and 14c, respectively. Product analysis of the reaction for 14a synthesis by TLC and NMR experiments suggested that acyl migration did not occurred, although 1,2-di-O-acylglycerols are known to readily isomerize. Careful analysis of phosphorylation products showed also that 15a, 15b, and 15c were only the inositol-containing products. Deprotection of all phosphoric esters in 15 was carried out by the reaction with a large excess of triethylamine in acetonitrile under anhydrous conditions at room temperature to give 16 (14 h, 93% for 16a; 20 h, 85% for 16b; 15 h, 88% for 16c). The dechloroacetylation procedure ¹⁹ in methylenechloride and ethanol using hydrazine dithiocarbonate under anhydrous conditions ²⁰ induced elimination of the levulinoyl group as well as the chloroacetyl in 16a and 16b, resulting in the formation of the final molecule, unsaturated PI(3,4,5)P3. It should be noted that, when chloroform instead of CH₂Cl₂ was used for removal of the acyl groups from 16c, the levulinoyl remained intact (68% yield). Therefore, further treatment with hydrazine in pyridine and acetic acid²¹ was necessary to provide saturated PI(3,4,5)P3 in 78% yield. The same solvent in the case of 16b caused formation of an unidentified material insoluble in any common solvents. In conclusion, the present procedure provides a convenient method for the synthesis of unsaturated and saturated PI(3,4,5)P₃. The new phosphate protecting group, Fm was confirmed to be useful for inositol phospholipid synthesis. ## **Experimental** NMR spectra (JEOL JNM GSX270) were recorded in CDCl3 unless otherwise noted. As references for the 1 H-, 13 C-, and 31 P NMR measurements, TMS (δ =0.0), CDCl3 (δ =77.0), and 85% H₃PO₄ (δ =0.0, external) were used, respectively. ¹³C- and ³¹P NMRs were all taken under ¹H-decoupled conditions. Optical rotations were measured using a Union PM-101. Elemental analyses were performed using a Perkin-Elmer 240C. Flash chromatography was utilized for column chromatography by using Fuji Silysia silica gel, BW-300. Thin layer chromatographic analysis was performed on Merck pre-coated plates, Silica Gel 60 F254. Solvents used here are abbreviated as follows: EA=AcOEt, Hex=hexane. An anhydrous reaction atmosphere was achieved using nitrogen gas. Extracts obtained after work-up were dried over MgSO₄ or Na₂SO₄. DL-6-O-[(S)-(+)-O-Acetylmandeloyl]-1,2-O-cyclohexylidene-3,4-O-(tetraisopropyldisiloxane-1,3-diyl)-myo-inositol (2). To a solution of 1,2-O-cyclohexylidene-3,4-O-(tetraisopropyldisiloxane-1,3diyl)-myo-inositol (11.4 g. 22.7 mmol) in CHCl3 (100 mL) was added dropwise at 0 °C pyridine (26.9 g, 34 mmol) and then (S)-(+)-O-acetylmandeloyl chloride²² (6.3 g, 29.4 mmol). After removal of the cooling bath, the mixture was stirred for 2 h at room temperature and AcOEt was added. The resulting organic solution was washed successively with H2O, saturated aqueous KHSO4 solution, H2O, saturated aqueous NaHCO3 solution, and saturated aqueous NaCl solution, dried, filtered, and evaporated. The residue was chromatographed on silica gel eluting with AcOEt and Hexane (1:5) to give 2 (14.3 g, 92% yield): Rf=0.6 (EA/Hex,1:3); ¹H NMR (270 MHz) δ 0.90-1.10 (28H, complex, isopropyl H), 1.46-1.72 (10H, complex, cyclohexylidene H), 2.15 (3H, s, Ac), 3.25 & 3.44 (1H, ddx2, J=9.2 and 8.9 Hz, Ins H₅), 3.82-3.87 (1.5H, complex, Ins H_{1,3}), 3.96 & 4.00 (1H, t x2, J=9.2 Hz, Ins H₄), 4.06 (0.5H, dd, J=8.2 and 4.3 Hz, Ins H₁), 4.21 & 4.28 (1H, tx2, J=4.3 Hz, Ins H₂), 5.18 & 5.21 (1H, ddx2, J=8.9 and 8.2 Hz, Ins H₆), 6.05 & 6.09 (1H, sx2, benzylic H), 7.38-7.48 (5H, complex, aromatic H); 13 C NMR (68 MHz) δ 12.09-12.85, 17.09-17.51 (12C, TIPDS C), 20.67 & 20.73 (Ac), 23.58, 23.63, 23.74, 23.78, & 24.96 (3C, cyclohexylidene C), 35.00, 35.11, 37.49, &3 7.58 (2C, cyclohexylidene C), 71.87 & 72.07 (Ins C₂), 73.12 & 73.14 (Ins C₄), 74.35 & 74.43 (benzylic C), 75.50 & 75.58 (Ins C₃), 75.72 & 75.75 (Ins C₆), 76.31 (Ins C₅), 76.64 & 76.70 (Ins C₁), 110.57 & 110.69 (cyclohexylidene quaternary C), 128.01 & 128.10 (2C, aromatic C_{3.5}), 128.58 & 128.61 (2C, aromatic C_{2.6}), 129.04 & 129.08 (2C, aromatic C₄), 133.76 & 134.13 (2C, aromatic C₁), 167.94, 168.34, 170.02, & 170.20 (2C, CO). 1D- and 1L-6-O-[(S)-(+)-O-Acetylmandeloyl]-1,2-O-cyclohexylidene-3,4-O-(tetraisopropyldisiloxane-1,3-diyl)-5-O-triethylsilyl-myo-inositol (D-3 and L-3). To a solution of diastereomeric 2 (14.0 g, 20.6 mmol) in CHCl₃ (100 mL) were added successively triethylsilyl chloride (12.4 g, 82.2 mmol), ethyldiisopropylamine (16.0 g, 123.4 mmol), and DMAP (1.3 g, 10.3 mmol) at 0 °C and the mixture was stirred for 2 h at room temperature. After addition of AcOEt, the organic solution was washed sequentially with H2O, saturated KHSO4 solution, H2O, saturated NaHCO3 solution, and saturated NaCl solution, dried, filtered, and evaporated. Chromatography of the residue (Et₂O-hexane, 1:2) gave diastereomers **D-3** (5.9 g, 36%) and **L-3** (6.8 g, 42%) accompanied with fractions including both isomers (0.8 g, 5%): **D-3:** R_f =0.25 (EA/Hex, 1:12); ¹H NMR (270 MHz) δ 0.45 (6H, q, J=7.9 Hz, CH₂), 0.84 (9H, t, J=7.9 Hz, CH₃), 0.96-1.11 (28H, complex, isopropyl H), 1.24-1.73 (10H, complex, cyclohexylidene H), 2.17 (3H, s, Ac), 3.43 (1H, t, J=5.0Hz, Ins H₅), 3.79 (1H, dd, J=9.7 and 3.5 Hz, Ins H₃), 4.04 (1H, dd, J=9.7 and 5.0 Hz, Ins H₄), 4.17 (1H, t, J=5.0 Hz, Ins H₁), 4.37 (1H, dd, J=5.0 and 3.5 Hz, Ins H₂), 5.05 (1H, t, J=5.0 Hz, Ins H₆), 6.00 (1H, s, benzylic H), 7.34-7.45 (5H, complex, aromatic H); ¹³C NMR (68 MHz) δ 4.73 (3C, CH₂), 6.76 (3C, CH₃), 12.08-12.81 & 17.16-17.56 (12C, TIPDS C), 20.67 (Ac), 23.64, 23.71, & 25.14 (3C, cyclohexylidene C), 34.17 & 36.09 (2C, cyclohexylidene C), 72.56 (Ins C₂), 74.39 (benzylic C), 75.08 (Ins C₄), 75.92 (Ins C₃), 76.23 (Ins C₆), 76.61 (Ins C₅), 76.69 (Ins C₁), 110.38 (cyclohexylidene C), 127.80 (2C, aromatic C_{3.5}), 128.65 (2C, aromatic C_{2,6}), 129.30 (aromatic C₄), 133.75 (aromatic C₁), 167.50 & 169.89 (2C, CO); $[\alpha]_D^{23}$ +1.3° (*c* 1.75, CHCl₃). **L-3**: R_f =0.30 (EA/Hex, 1:12); ¹H NMR (270 MHz) δ 0.63 (6H, q, J=7.6 Hz, CH₂), 0.92 (9H, t, J=7.6 Hz, CH₃), 0.99-1.12 (28H, complex, isopropyl H), 1.22-1.80 (10H, complex, cyclohexylidene H), 2.17 (3H, s, Ac), 3.46 (1H, t, J=8.4 Hz, Ins H₅), 3.59 (1H, dd, J=7.0 and 4.0 Hz, Ins H₁), 3.76 (1H, dd, J=9.3 and 4.0 Hz, Ins H₃), 3.95 (1H, dd, J=9.3 and 8.4 Hz, Ins H₄), 4.12 (1H, t, J=4.0 Hz, Ins H₂), 5.07 (1H, dd, J=7.0 and 8.4 Hz, Ins H₆), 6.15 (1H, s, benzylic H), 7.35-7.47 (5H, complex, aromatic H); ¹³C NMR (68 MHz) δ 5.03 (3C, CH₂), 6.90 (3C, CH₃), 11.82-12.83 & 17.06-17.55 (12C, TIPDS C), 20.71 (Ac), 23.59, 23.86, & 25.09 (3C, cyclohexylidene C), 34.92 & 36.91 (2C, cyclohexylidene C), 73.32 (Ins C₂), 73.60 (benzylic C), 74.02 (Ins C₄), 75.50 (Ins C₃), 75.85 (Ins C₆), 76.32 (Ins C₅), 77.41 (Ins C₁), 110.31 (cyclohexylidene C), 128.16 (2C, aromatic C₃,5), 128.57 (2C, aromatic C_{2,6}), 129.05 (aromatic C₄), 134.31 (aromatic C₁), 167.59 & 169.64 (2C, CO); $[\alpha]_D^{23}$ +4.5° (*c* 2.07, CHCl₃). **1D-1,2-***O*-Cyclohexylidene-3,4-*O*-(tetraisopropyldisiloxane-1,3-diyl)-5-*O*-triethylsilyl-*myo*-inositol (4). A DMF (50 mL) solution of **D-3** (5.5 g, 6.9 mmol) was cooled to 0 °C and hydrazine hydrate (7.0 g, 140.2 mmol) in DMF (20 mL) was carefully added. The solution was stirred for an additional 2.5 h at room temperature and after addition of AcOEt, washed with H₂O (several times), saturated KHSO4 solution, H₂O, saturated NaHCO3 solution, and saturated NaCl solution, dried, filtered, and evaporated. The residue was chromatographed on silica gel (EA/Hex, 1:12) to give the 6-free silyl ether derivative 4 (3.8 g, 89%): R_f =0.4 (Et₂O/Hex, 1:7); ¹H NMR (270 MHz) δ 0.69 (6H, q, J=7.9 Hz, CH₂), 0.96 (9H, t, J=7.9 Hz, CH₃), 1.05-1.10 (28H, complex, isopropyl H), 1.42-1.76 (10H, complex, cyclohexylidene H), 2.23 (1H, d, J=3.2 Hz, OH), 3.24 (1H, ddd, J=10.5, 9.0, and 3.2 Hz, Ins H₅), 3.53 (1H, ddd, J=10.5, 7.6, and 2.1 Hz, Ins H₆), 3.82 (1H, dd, J=7.5 and 4.0 Hz, Ins H₃), 3.87 (1H, dd, J=9.0 and 7.5 Hz, Ins H₄), 3.88 (1H, dd, J=7.6 and 4.6 Hz, Ins H₁), 4.26 (1H, dd, J=4.6 and 4.0 Hz, Ins H₂); [α]_D²⁵ -21.6° (*c* 1.58, CHCl₃). 1D-1,2-O-Cyclohexylidene-6-O-levulinoyl-3,4-O-(tetraisopropyldisiloxane-1,3-diyl)-5-O-triethylsilyl-myo-inositol (5).⁵ To a solution of 4 (1.8 g, 2.9 mmol) in CHCl3 (20 mL) were added at 0 °C levulinic acid (0.7 g, 5.9 mmol), N,N'-dicyclohexylcarbodiimide (1.5 g, 7.3 mmol), and then 4-dimethylaminopyridine (0.07 g, 0.6 mmol). The mixture was stirred for 3 h at rt and filtered through a pad of Celite. The filtrate was filtered again after evaporation and addition of ethyl ether, and chromatographed (EA/CHCl3, 1:8) to give 5 (1.9 g, 98%): $[\alpha]_D^{25}$ -16.9° (c 1.14, CHCl3). Its spectral data were in agreement with those for PI(3,4,5)P3 reported.⁵ **1D-1,2-***O***-Cyclohexylidene-6-***O***-levulinoyl-***myo***-inositol** (6). To a solution of 5 (1.9 g, 2.7 mmol) in THF (20 mL) were added at 0 °C benzoic acid (1.3 g, 10.9 mmol) and *n*-Bu4NF·3H₂O (3.3 g, 10.4 mmol), and the mixture was stirred at the same temperature for an additional 7 h. After evaporation of the solvent, the residue was chromatographed (EA/CH₃OH, 20:1) to afford 6 (758 mg, 78%): R_f =0.3 (EA/MeOH, 10:1); mp 149-151 °C (from MeOH); ¹H NMR (270 MHz) δ 1.30-1.82 (10H, complex, cyclohexylidene H), 2.19 (3H, s, CH₃), 2.50-3.00 [4H, complex, (CH₂)₂], 3.42 (1H, dd, J=9.8 and 10.1 Hz, Ins H₅), 3.78 (1H, dd, J=9.5 and 4.0 Hz, Ins H₃), 3.87 (1H, dd, J=9.8 and 9.5 Hz, Ins H₄), 4.13 (1H, dd, J=7.6 and 4.9 Hz, Ins H₁), 4.46 (1H, dd, J=4.9 and 4.0 Hz, Ins H₂), 5.10 (1H, dd, J=10.1 and 7.6 Hz, Ins H₆); IR (nujor, cm⁻¹) 3400, 1740, 1700; *Anal.* Calc. for C₁7H₂6O₈: C, 56.97; H, 7.31%. Found: C, 56.77; H, 7.29%. 1D-1,2-O-Cyclohexylidene-3,4,5-tri-O-[di(9-fluorenylmethyl) phosphoryl]-6-O-levulinoyl-myo-inositol (8). To a CHCl3 (20 mL) solution of triol 6 (758 mg, 2.1 mmol) were added at 0 °C di(9-fluorenylmehtyl) N,N-diisopropylphosphoramidite 7 (5.0 g, 9.6 mmol) and 1H-tetrazole (703 mg, 10.0 mmol) and the mixture was stirred for 2 h at rt. After addition of m-chloroperbenzoic acid (1.8 g, 10.1 mmol) at -78 °C, the resulting solution was stirred for 1.5 h at rt, and 10% Na₂SO₃ aqueous solution was added. The mixture was stirred for 30 min at rt, and AcOEt was added. The organic layer was washed sequentially with H2O, saturated KHSO4 solution, H2O, saturated NaHCO3 solution, and saturated NaCl solution, dried, filtered, and evaporated. Chromatography of the residue (EA/CHCl3, 1:2) gave trisphosphate 7 (3.42 g, 97%): Rf=0.4 (EA/CHCl₃, 1:2); ¹H NMR (270 MHz) δ 1.20-1.73 (10H, complex, cyclohexylidene H), 2.01 (3H, s, CH₃), 2.39-2.64 [4H, complex, (CH₂)₂], 3.94-4.39 [22H, complex, Ins H_{1,2,3,5}, and (CH₂CH)x6], 4.90 (1H, q, J=7.6 Hz, Ins H₄), 5.26 (1H, t, J=6.4 Hz, Ins H₆), 7.01-7.67 (48H, complex, aromatic H); 13 C NMR (68) MHz) δ 23.34, 23.62, & 24.75 (3C, cyclohexylidene C), 27.79 (α -CH₂), 29.65 (CH₃), 31.54 & 33.91 (2C, cyclohexylidene C), 37.64 (β-CH₂), 47.62 & 47.71 (6C, dx₂, J=7.0 Hz each, Fm methine), 68.92 (d, J=6.1 Hz, Fm methylene), 69.29-69.72 (6C, complex, Ins C₆ and Fm methylene), 72.06 (Ins C₂), 72.89 (Ins C₁), 73.54 (br, Ins C₃), 74.52 (m, Ins C₄), 75.60 (m, Ins C₅), 111.47 (cyclohexylidene C), 119.67-119.86 (12C, complex, Fm C₅), 124.76-125.35 (12C, complex, Fm C₂), 126.87-127.84 (24C, complex, Fm C₃ 4), 141.14-141.26 (12C, complex, Fm C₆), 142.67-143.14 (12C, complex, Fm C₁), 171.19 (CO), 206.06 (CO); ³¹P NMR (109 MHz) δ -0.98, -0.55, -0.10; $[\alpha]_{D^{23}}$ +14.3° (c 1.61, CHCl₃); Anal. Calc. for C₁₀₁H₈₉O₁₈P₃·CHCl₃: C, 68.55; H, 5.08%. 1D-3,4,5-Tri-*O*-[di(9-fluorenylmethyl) phosphoryl]-6-*O*-levulinoyl-*myo*-inositol (9). A solution of 7 (3.35 g, 2.0 mmol), methanol (0.34 g, 10.0 mmol), and trifluoroacetic acid (5.70 g, 25.0 mmol) in CHCl₃ (35 ml) was stirred around -5 to 0 °C for 8 h, and AcOEt was added. The organic layer was washed sequentially with H₂O, saturated NaHCO₃ solution, and saturated NaCl solution, dried, filtered, and evaporated. Chromatography of the residue (EA/CHCl₃, 5:2) gave 1,2-diol 9 (2.97 g, 93%): R_f =0.2 (EA/CHCl₃, 1:1); ¹H NMR (270 MHz) δ 2.07 (3H, s, CH₃), 2.13-2.73 [4H, complex, (CH₂)₂], 2.83 & 3.03 (2H, br, OH), 3.22 (1H, br, Ins H₁), 3.75 (1H, ddd, J=7.0, 6.4, and 2.7 Hz, Ins H₃), 3.82 (1H, br, Ins H₂), 3.83-4.36 [19H, complex, Ins H₅, and (CH₂CH)x6], 4.75 (1H, q, J=7.0 Hz, Ins H₄), 5.24 (1H, t, J=9.8 Hz, Ins H₆), 6.91-7.72 (48H, complex, aromatic H); ¹³C NMR (100 MHz) δ 28.15 (lev C₂), 29.96 (CH₃), 38.10 (lev C₃), 47.62, 47.72, & 47.80 (6C, dx₃, J=8.3 Hz each, Fm methylene), 68.15 (Ins C₆), 68.71 (d, J=6.4 Hz, Fm methylene), 69.19-69.57 (7C, complex, Ins C_{1,2} and Fm methylene), 72.55 (Ins C₃), 75.70 (m, Ins C₄), 76.23 (m, Ins C₅), 119.68-120.05 (12C, complex, Fm C₅), 124.61-125.37 (12C, complex, Fm C₂), 126.90-128.79 (24C, complex, Fm C_{3,4}), 141.12-141.36 (12C, complex, Fm C₆), 142.64-143.19 (12C, complex, Fm C₁), 172.61 (CO), 207.63 (CO); ³¹P NMR (109 MHz) δ -1.75, -0.66, -0.49; [α]_D²³ +1.3° (c 23.1, CHCl₃); *Anal.* Calc. for C95H82O₁₇P₃-3/2CHCl₃: C, 65.61; H, 4.71%. Found: C, 65.95; H, 4.77%. 1D-3,4,5-Tri-O-[di(9-fluorenylmethyl) phosphoryl]-6-O-levulinoyl-1-O-triethylsilyl-myo-inositol (11). To a solution of 9 (2.75 g, 1.7 mmol) in CHCl3 (30 mL) were added 2,6-di-t-butyl-4-methylpyridine (0.90 g, 4.4 mmol) and triethylsilyl trifluoromethanesulfonate (2.45 g, 9.3 mmol), and the mixture was stirred for 2 h between -42 and -30 °C. The solution was treated with methanol for 30 min to destroy an excess of the triflate and AcOEt was added. The organic solution was washed sequentially with H2O, saturated KHSO4 solution, H2O, saturated NaHCO3 solution, and saturated NaCl solution, dried, filtered, and evaporated. Chromatography of the residue (EA/CHCl3, 1:10 then acetone/CHCl3, 1:2) gave silyl ether 11 (2.21 g, 75%) and the starting material 9 (0.42 g, 14%): Rf=0.65 (acetone/CHCl3, 1:5); ¹H NMR (270 MHz) δ 0.58 (6H, q, J=7.9 Hz, Si CH₂), 0.91 (9H, t, J=7.9 Hz, Si CH₃), 1.98 (3H, s, lev CH₃), 2.25-2.62 [4H, complex, lev (CH₂)₂], 3.60 (1H, dd, J=9.8 and 2.7 Hz, Ins H₁), 3.87-4.38 [21H, complex, Ins H₂,3,5, and Fm (CH₂CH)x6], 4.97 (1H, q, J=9.8 Hz, Ins H₄), 5.38 (1H, t, J=9.8 Hz, Ins H₆), 6.91-7.72 (48H, complex, aromatic H); ¹³C NMR (100 MHz) δ 4.70 (3C, Si CH₃), 6.56 & 6.62 (3C, Si CH₂), 27.85 (lev C₂), 29.78 (lev CH₃), 37.39 (lev C₃), 47.52, 47.65, & 47.77 (6C, Fm methine), 69.33-69.79 (7C, complex, Ins C₆ and Fm methylene), 70.29 (Ins C₂), 70.85 (Ins C₁), 72.09 (Ins C₃), 75.15 (m, Ins C₄), 75.72 (br, Ins C₅), 119.66-119.82 (12C, Fm C₅), 124.96-125.16 (12C, Fm C₂), 126.88-127.75 (24C, Fm C₃,4), 141.10-141.28 (12C, Fm C₆), 142.72-143.10 (12C, Fm C₁), 171.98 (CO), 206.09 (CO); ³¹P NMR (109 MHz) δ -1.71, -1.29, -1.15; [α]_D²³ +2.3° (c 2.45, CHCl₃). 1D-2-*O*-Chloroacetyl-3,4,5-tri-*O*-[di(9-fluorenylmethyl) phosphoryl]-6-*O*-levulinoyl-1-*O*-triethylsilyl-*myo*-inositol (12). After addition of pyridine (650 μL, 8.0 mmol), chloroacetic anhydride (0.99 g, 5.8 mmol), and then 4-dimethylaminopyridine (30.5 mg, 0.3 mmol) at 0 °C to a solution of 11 (1.95 g, 1.2 mmol) in CHCl₃ (20 mL), the mixture was stirred for 30 min at rt, and AcOEt was added. The organic layer was treated by a usual procedure and 12 (1.65 g, 81%) was isolated by SiO₂-chromatography (EA/CHCl₃, 1:8): R_f =0.7 (AcOEt/CHCl₃,1:3); ¹H NMR (270 MHz) δ 0.62 (6H, q, J=8.2 Hz, Si CH₂), 0.92 (9H, t, J=8.2 Hz, Si CH₃), 2.20 (3H, s, lev CH₃), 2.60 (2H, t, J=6.1 Hz, lev C₂), 2.87 (2H, t, J=6.1 Hz, lev C₃), 3.69 (1H, dd, J=9.8 and 2.3 Hz, Ins H₁), 3.77-4.41 [22H, complex, Ins H₃,5, Fm (CH₂CH)x6, and CH₂Cl], 4.76 (1H, q, J=9.8 Hz, Ins H₄), 5.29 (1H, t, J=9.8 Hz, Ins H₆), 5.74 (1H, t, J=2.3 Hz, Ins H₂), 7.00-7.65 (48H, complex, aromatic H); ³1P NMR (109 MHz) δ -0.10, -0.08, -0.03; [α]_D²³ +7.6° (*c* 1.91, CHCl₃); *Anal.* Calc. for C₁₀₃H96ClO₁8P₃Si·CHCl₃: C, 65.82; H, 5.15%. Found: C, 65.81; H, 5.31%. 1D-2-O-Chloroacetyl-3,4,5-tri-O-[di(9-fluorenylmethyl) phosphoryl]-6-O-levulinoyl-myoinositol (13). After addition of 80% aqueous acetic acid (9.0 mL) and p-toluenesulfonic acid hydrate (0.76 g, 4.0 mmol) to a solution of 12 (5.3 g, 3.0 mmol) in CHCl3 (4.5 mL) at 0 °C, the mixture was stirred for 5 h at rt and AcOEt was added. The organic solution was washed continuously with H2O and then with saturated NaHCO3 solution and saturated NaCl solution, dried, filtered, and evaporated. The residue was chromatographed (SiO₂, acetone/CHCl₃, 1:5) to give 13 (4.49 g, 90%): R_f=0.4 (acetone/CHCl₃, 1:3); ¹H NMR (270 MHz) δ 2.09 (3H, s, CH₃), 2.18-2.78 [4H, complex, lev (CH₂)₂], 3.56 (1H, J=9.8 and 2.4 Hz, Ins H₁), 3.64 (1H, br, OH), 3.79-4.41 [22H, complex, Ins H_{3.5}, Fm (CH₂CH)x6, and CH₂Cl], 4.75 (1H, q, J=9.8 Hz, Ins H₄), 5.28 (1H, t, J=9.8 Hz, Ins H₆), 5.61 (1H, t, J=2.4 Hz, Ins H₂), 6.99-7.72 (48H, complex, aromatic H); 13 C NMR (68 MHz) δ 28.07 (α -CH₂), 29.62 (CH3), 38.25 (β -CH₂), 40.68 (CH2Cl), 47.42-47.75 (6C, complex, Fm methine), 67.94 (InsC₆), 68.87 (d, *J*=5.5 Hz, Fm methylene), 69.26-69.63 (5C, complex, Fm methylene), 72.39 (InsC₂), 72.55 (InsC₁), 73.28 (InsC₃), 75.17 (m, InsC₄), 76.08 (InsC₅), 119.70-119.90 (12C, Fm C₅), 124.67-125.34 (12C, Fm C₂), 126.75-127.95 (24C, Fm C_{3.4}), 141.03-141.35 (12C, Fm C₆), 142.60-143.22 (12C, Fm C₁), 166.34 (CO), 172.35 (CO), 208.18 (CO); ³¹P NMR (109 MHz) δ -0.90, -0.51, -0.21; [α]D²³ +5.5° (c 2.13, CHCl₃); Anal. Calc. for C97H₈₂ClO₁₈P₃: C, 70.01; H, 4.97%. Found: C, 69.93; H, 5.14%. 1D-1-O-[(2-O-Arachidonoyl-1-O-stearoyl-sn-glycero)-2-cyanoethyloxyphosphoryl]-2-O-chloroacetyl-3,4,5-tri-O-[di-(9-fluorenylmethyloxy)phosphoryl]-6-O-levulinoyl-myo-inositol (15a). 2-O-Arachidonoyl-1-O-stearoyl-sn-glycerol 2-cyanoethyl N,N-diisopropylphosphoramidite (14a) was first prepared as follows: A solution of 2-O-arachidonoyl-1-O-stearoyl-sn-glycerol 23 (451 mg, 0.73 mmol) in ethyl ether (7 mL) was cooled to -78 °C, and then triethylamine (210 mg, 2.08 mmol) and chloro(2-cyanoethyloxy)diisopropylaminophosphine (236 mg, 1.0 mmol) were added. The solution was stirred at the same temperature for an additional 5 min and then at rt for 1 h. After addition of ethyl ether, the organic solution was washed with saturated NaHCO3 solution and saturated NaCl solution, dried, filtered, and evaporated. The residue was chromatographed eluting with Et₂O and hexane (1:3) including 5% of triethylamine to give amidite **14a** (469 mg, 79%): 1 H NMR (270 MHz) δ 0.88 & 0.89 (6H, tx2, J=6.8 Hz, ste and ara CH₃), 1.17 & 1.83 (6H, dx2, J=6.8 Hz, iPr CH₃), 1.25 (34H, br, ste and ara CH₂), 1.60 (2H, br, ste H₃), 1.70 (2H, q, J=7.3 Hz, ara H₃), 2.0-2.16 (4H, complex, terminal allylic CH₂), 2.30, 2.33 & 2.34 (2H, tx3, J=7.3 Hz, ste and ara H₂), 2.63 (2H, t, J=6.3 Hz, CH₂CN), 2.73-2.90 (6H, complex, inner allylic CH₂), 3.50-3.90 (6H, complex, iPr CH, gly sn-H₃, OCH₂), 4.15 & 4.18 (1H, ddx2, J=11.7 and 7.3 Hz, gly sn-H₁), 4.32 & 4.37 (1H, ddx2, J=11.7 and 3.7 Hz, gly sn-H₁), 5.19 (1H, br, gly sn-H₂), 5.28-5.45 (8H, complex, vinyl H); 3 P NMR (109 MHz) δ 150.72 (int, 100%), 150.57 (80%). The amidite 14a (469 mg, 0.57 mmol) and 1H-tetrazole (67 mg, 0.96 mmol) were added to a CHCl₃ (7 mL) solution of 13 (627 mg, 0.38 mmol), and the resulting clear solution was stirred for 2.5 h at rt, cooled to -78 °C and then t-butyl hydrogen peroxide (63 mg, 0.7 mmol) was added. After being stirred for 2 h at rt, the solution was treated with 10% aqueous Na₂SO₃ for 30 min and AcOEt was added. The organic layer was washed with H2O, saturated NaHCO3 solution, and saturated NaCl solution, dried, filtered, and evaporated. Chromatography of the residue (EA/CHCl₃, 1:4 then acetone/CHCl₃, 1:4) afforded **15a** (713 mg, 79%): R_f=0.4 (Acetone/CHCl₃, 1:4); ¹H NMR (270 MHz) δ 0.86 (6H, complex, ste and ara CH₃), 1.17-1.40 (34H, complex, ste and ara CH₂), 1.56 (2H, br, ste H₃), 1.67 (2H, m, ara H₃), 1.99 & 2.00 (3H, sx₂, lev CH₃), 2.00-2.08 (4H, complex, terminal allylic CH₂), 2.09-2.59 [8H, complex, ste and ara H₂ and lev (CH₂)₂], 2.69 (1H, t, J=7.8 Hz, CHCN), 2.80 (7H, complex, CHCN, inner allylic CH₂), 3.72-4.38 [28H, complex, Ins H_{3.5}, gly sn-H_{1.3}, Fm (CH₂CH)x₆, OCH₂, -CH₂Cl], 4.47 (1H, m, Ins H₁), 4.71 (1H, m, Ins H₄), 5.20-5.44 (10H, complex, InsH₆, gly sn-H₂, vinyl H), 5.96 & 5.98 (1H, tx2, J=3.9 Hz, Ins H₂), 7.01-7.74 (48H, complex, aromatic H); ¹³C NMR (68 MHz) δ 14.00 & 14.05 (2C, ste and ara CH₃), 19.27 & 19.38 (CCN), 20.48 & 20.61 (2C, ste and ara CCH₃), 24.59, 24.64 & 24.72 (2C, ste and ara C₃), 25.53, 26.39, & 27.13 (5C, allylic C), 27.14 & 27.32 (lev C₂), 29.04-29.75 (13C, complex, ste and ara CH₂ and lev CH₃), 31.41 (ara C₁₈), 31.83 (ste C₁₆), 33.43, 33.82, & 33.87 (2C, ste and ara C₂), 36.87 & 37.02 (lev C₃), 40.38 (CCl), 47.55 & 47.67 (6C, dx2, J=7.3 Hz, Fm methine), 61.50 (m, OCH2), 62.52 & 62.88 (m, gly sn-C₁), 66.27 & 66.63 (m, gly sn-C₃), 69.07-69.84 (8C, complex, InsC₆, gly sn-C₂, Fm methylene), 71.02 (Ins C₂), 72.35 (m, Ins C₃), 72.69 (m, Ins C₁), 74.43 (m, Ins C₄), 75.36 (m, Ins C₅), 116.38 & 116.47 (CN), 119.56-119.19 (12C, complex, Fm C₅), 124.73-125.41 (12C, Fm C₂), 126.63-130.44 (32C, Fm C_{3.4}, vinyl C), 141.02-141.47 (12C, complex, Fm C₆), 142.53-143.17 (12C, complex, Fm C₁), 166.14 & 166.28 (chloroacetyl CO), 171.92 (lev CO), 172.55 & 173.16 (2C, ste and ara CO), 205.87 & 206.31 (CO); 31P NMR (109 MHz) δ -1.69 (1/2P), -1.59 (1/2P), -1.32 (1P), -0.86 (2P); Anal. Calc. for C141H156ClNO25P4·2H2O: C, 68.84; H, 6.56; N, 0.57%. Found: C, 68.64; H, 6.52; N, 0.72%. DL-2-O-Chloroacetyl-3,4,5-tri-O-[di-(9-fluorenylmethyloxy)phosphoryl]-6-O-levulinoyl-1-O-[(2-O-linolenoyl-1-O-stearoyl-sn-glycero)-2-cyanoethyloxyphosphoryl]-myo-inositol (15b). First, the corresponding phosphoramidite 14b was prepared as described above for 14a in 84% and the same phosphitylation and subsequent oxidation afforded 1-O-phosphorylation product 15b in 72% yield: 1H NMR (270 MHz) δ 0.88 (3H, t, J=6.7 Hz, ste CH3), 0.97 (3H, t, J=7.6 Hz, lin CH3), 1.25 (36H, br, ste and lin CH2), 1.57 (4H, br, ste and lin H3), 1.99 & 2.00 (3H, sx2, lev CH3), 2.00-2.09 (4H, complex, terminal allylic H), 2.20-2.72 [10H, complex, ste and lin H2, lev (CH2)2, CH2CN], 2.79 (4H, br, inner allylic H), 3.68-4.38 (26H, complex, Ins H3.5, gly sn-H1.3, Fm (CH2CH)x6, and OCH2), 4.43 (1H, m, Ins H1), 4.69 (1H, m, Ins H4), 5.20-5.41 (8H, complex, Ins H6, gly sn-H2, vinyl H), 5.97 (1H, m, Ins H2), 7.03-7.70 (48H, complex, aromatic H); ¹³C NMR (68 MHz) δ 14.05 & 14.12 (2C, ste and lin C₁₈), 19.25 & 19.36 (CCN), 20.45 (lin C₁₇), 22.60 (ste C₁₇), 24.69 (2C, ste and lin C₃), 25.45 (2C, inner allylic C), 27.12 (2C, terminal allylic C), 28.96-29.74 (18C, complex, ste and lin CH₂ and lev C₂,5), 31.83 (ste C₁₆), 33.84 & 33.98 (2C, ste and lin C₂), 36.85 & 37.00 (lev C₃), 40.38 (CCl), 47.58 & 47.65 (6C, dx₂, J=7.3 Hz, Fm methine), 61.54 (m, OCH₂), 62.52 & 62.89 (mx₂, gly sn-C₁), 66.31 & 66.62 (mx₂, gly sn-C₃), 69.02-69.67 (8C, complex, Ins C₆, gly sn-C₂, Fm methylene), 71.02 (Ins C₂), 72.3 (m, Ins C₃), 72.65 (m, Ins C₁), 74.40 (m, Ins C₄), 75.32 (m, Ins C₅), 116.39 & 116.46 (CN), 119.72-120.13 (12C, complex, Fm C₅), 124.46-125.30 (13C, complex, Fm C₂ and vinyl C), 126.80-127.71 (25C, complex, Fm C₃,4, vinyl C), 128.18, 128.41, 130.14, & 131.83 (4C, vinyl C), 141.09-141.30 (12C, complex, Fm C₆), 142.55-143.25 (12C, complex, Fm C₁), 166.14, 166.15, 166.26, & 166.58 (chloroac CO), 171.57 & 171.90 (lev CO), 172.75 & 173.15 (2C, ste and lin CO), 205.86 & 206.31 (CO); ³¹P NMR (109 MHz) δ -1.84 (1/2P), -1.70 (1/2P), -1.47 (1P) -1.09 (1P), -1.01 (1P). DL-2-O-Chloroacetyl-3,4,5-tri-O-[di-(9-fluorenylmethyloxy)phosphoryl]-6-O-levulinoyl-1-O-[(1,2-di-O-stearoyl-sn-glycero)-2-cyanoethyloxyphosphoryl]-myo-inositol (15c). The same procedure as above except for the use of mCPBA instead of t-BuO₂H gave 15c in 88% yield (96% yield for amidite 14c): R_f =0.5 (Acetone/CHCl₃, 1:5); ¹H NMR (270 MHz) δ 0.88 (3H, t, J=6.6 Hz, ste H₁₈), 1.25 (56H, br, ste CH₂), 1.57 (4H, br, H₃), 1.99 & 2.00 (3H, sx₂, lev CH₃), 2.16-2.58 [8H, complex, ste H₂ and lev (CH₂)₂], 2.69 & 2.81 (2H, tx₂, J=6.1 Hz, CH₂CN), 3.74-4.38 [26H, complex, Ins H₃,5, gly sn-H₁,2, Fm (CH₂CH)x₆, and OCH₂], 4.46 (1H, m, Ins H₁), 4.74 (1H, m, Ins H₄), 5.30 (2H, complex, Ins H₆, and gly sn-H₂), 5.98 (1H, m, Ins H₂), 6.97-7.76 (48H, complex, aromatic H); ³¹P NMR (109 MHz) δ -0.78 (1/2P), -0.67 (1/2P), -0.45 (1P), -0.06 (2P) **Deprotection of 15a (two steps).** To an CH₃CN (4.5 mL) solution of **15a** (438 mg, 0.18 mmol) was added triethylamine (741 mg, 7.32 mmol) at 0 °C and the mixture was stirred for 14 h at rt. To remove benzoflubene formed by β-elimination of Fm, the residue obtained by evaporating the reaction mixture at rt was washed with hexane (3 mL each, ten times) and then AcOEt (3 mL each, ten times) to give chromatographically (SiO₂) and spectroscopically (1 H-, 3 P-, and 13 C-NMR) pure **16a** (286 mg, 93%): R_{f} =0.4 (CHCl₃/acetone/CH₃OH/AcOH/H₂O, 25:12:13:7:10); 1 H NMR (270 MHz, partial) δ 0.77 (6H, br, ara and ste CH₃), 2.97 (24H, br, NCH₂), 5.10 (1H, br, gly *sn*-H₂), 5.24(9H, br, Ins H₆, vinyl H), 5.80 (1H, br, Ins H₂); 13 C NMR (68 MHz) δ 7.77 (12C, CH₃ in Et₃N), 13.43 (2C, ara and ste CH₃), 22.03 (ara C₁₉), 22.15 (ste C₁₉), 24.35 (2C, ara and ste C₃), 25.10, 25.99, & 26.69 (5C, allylic C), 27.70 (lev C₂), 28.64, 28.82, 29.00, & 29.16 (14C, ara and ste CH₂ and lev CH₃), 31.00 (ara C₁₈), 31.40 (ste C₁₆), 33.13 (ara C₂), 33.52 (ste C₂), 37.43 (lev C₃), 40.31 (CCl), 45.14 (12C, CH₂ in Et₃N), 62.36 (br, gly *sn*-C₁), 63.36 (br, gly *sn*-C₃), 70.16 (br, gly *sn*-C₂), 70.83 (br, Ins C₆), 71.11 (br, Ins C₂), 72.09 (Ins C₃), 73.60 (Ins C₁), 75.46 (Ins C₄), 76.19 (Ins C₅), 127.04, 127.30, 127.57, 127.75, 128.06, 128.36, 128.68, & 129.91 (8C, vinyl C), 165.92 (chloroac CO), 172.01 (lev CO), 172.65 (ara CO), 173.31 (ste CO), 208.17 (br, CO); ³¹P NMR [109 MHz, 65.8 mg, CDCl₃ (2.4 mL) + CD₃OD (0.4 mL) + NEt₃ (0.4 mL)] δ -0.62, 0.06, 0.30, 2.30. A solution of **16a** (85.6 mg, 0.05 mmol) in benzene was evaporated to remove azeotropically a trace of water and CH₂Cl₂ (1 mL) was added. After addition of an EtOH suspension of ethyldiisopropylammonium hydrazinedithiocarbonate (HDTC)¹⁹ (1.02 mmol) at 0 °C, which was prepared according to a modified procedure,⁵ the mixture was stirred for 2.5 h at rt, cooled to 0 °C, and then acidified with a KHSO₄ aqueous solution. The mixture was extracted with chloroform twice and the combined organic extracts were dried and filtered. After addition of a small amount of triethylamine to the filtrate to form salts with phosphoric esters, the solution was evaporated and the residue was washed with AcOEt to afford sn-2-arachidonoyl-sn-1-stearoyl-PI(3,4,5)P3 (58.3 mg, 73%): R_f =0.3 (CHCl3/acetone/CH3OH/AcOH/H2O, 25:12:13:7:10); 1 H NMR [270 MHz, 60.3 mg, CDCl3 (1.2 mL) + CD3OD (0.2 ml), partial] δ 0.95 (6H, complex, ara and ste CH3), 1.58 (4H, br, ara and ste H3), 2.14 (4H, m, allylic H), 2.29 (4H, m, ara and ste CH2), 3.23 (42H, br, NCH2), 3.96-4.65 (10H, complex, gly sn-H1,3 and Ins H1,2,3,4,5,6), 5.21 (1H, br, gly sn-H2), 5.38 (8H, m, vinyl H); 13 C NMR (100 MHz, CDCl3/CD3OD, 6:1) δ 8.14 (21C, CH3 in Et3N), 13.60 (ara CH3), 13.65 (ste CH3), 22.15 (ara C19), 22.26 (ste C17), 24.42 (ara C3), 24.48 (ste C3), 25.21, 26.12, & 26.82 (5C, allylic C), 28.78, 28.94, 29.12, & 29.29 (13C, ara and ste CH2), 31.12 (ara C18), 31.52 (ste C16), 33.29 (ara C2), 33.68 (ste C2), 45.93 (21C, NC), 62.40 (br, gly sn-C1), 63.71 (br, gly sn-C3), 69.91 (Ins C2), 70.14 (m, gly sn-C2), 70.58 (br, Ins C6), 74.95 (brd, J=3.2 Hz, Ins C3), 75.25 (br, Ins C1), 76.49 (br, Ins C4), 78.86 (br, Ins C5), 127.15, 127.44, 127.71, 127.91, 128.23, 128.48 (2C), & 130.09 (8C, vinyl C), 172.70 (ara CO), 173.32 (ste CO); 31 P NMR [109 MHz, 60.3 mg, CDCl3 (2.4 mL) + CD3OD (0.4 mL) + NEt3 (0.4 ml)] δ -0.52, 0.81, 1.88, 2.86; MASS (FAB-, diethanolamine) m/z 1125 [M(C47H86O22P4)-1]. **Deprotection of 15b (two steps).** The procedure was carried out as for **15a**: **16b**: R_f =0.5 (CHCl₃/acetone/CH₃OH/AcOH/H₂O, 25:12:13:7:10); ³¹P NMR [109 MHz, 57.1 mg, CDCl₃ (2.4 mL) + CD₃OD (0.3 mL) + NEt₃ (0.4 mL)] δ -0.24 (1P), 1.21 (1P), 1.67 (1P), 3.64 (1P). sn-2-Linolenoyl-sn-1-stearoyl-PI(3,4,5)P3: R_f =0.3 (CHCl₃/acetone/CH₃OH/AcOH/H₂O, 25:12:13:7:10); ¹H NMR (270 MHz, CDCl₃/CD₃OD, 8:1) δ 0.95 (3H, , br, ste CH₃), 1.05 (3H, br, lin CH₃), 1.38 (99H, br, lin and ste CH₂ and CH₃ in Et₃N), 1.65 (4H, br, lin and ste H₃), 2.14 (4H, br, allylic H), 2.37 (4H, br, lin and ste H₂), 2.88 (4H, br, inner allylic CH₂), 3.23 (42H, br, NCH₂), 4.02-4.74 (10H, complex, gly sn-H₁,3 and Ins H₁,2,3,4,5,6), 5.30 (1H, br, gly sn-H₂), 5.42 (6H, br, vinyl H); ¹³C NMR (100 MHz, CDCl₃/CD₃OD, 8:1) δ 8.14 (21C, CH₃ in Et₃N), 13.77 & 13.92 (2C, lin and ste CH₃), 20.24 (lin C₁7), 22.38 (ste C₁7), 24.59 & 24.61 (2C, lin and ste C₃), 25.22 & 25.32 (2C, inner allylic C), 26.93 (terminal allylic C), 28.83, 28.90, 29.00, 29.07, 29.15, 29.25, 29.41, & 29.51 (16C, lin and ste CH₂), 31.63 (ste C₁6), 33.80 & 33.95 (2C, lin and ste C₂), 45.65 (21C, NC), 62.56 (br, gly sn-C₁), 63.59 (m, gly sn-C₃), 70.28 (2C, complex, Ins C₂ and gly sn-C₂), 70.75 (Ins C₆), 75.03 (Ins C₃), 75.53 (Ins C₁), 76.53 (Ins C₄), 78.86 (Ins C₅), 126.81, 127.47, 128.92, 128.01, 129.91, & 131.66 (6C, vinyl C), 173.05, 173.07, 173.45, & 173.49 (2C, lin and ste CO); ³¹P NMR [109 MHz, 58.2 mg, CDCl₃ (2.4 mL) + CD₃OD (0.4 mL) + Et₃N (0.4 mL)] δ 0.56 (1P), 1.72 (1P), 2.88 (1P), 3.90 & 3.93 (1P); MASS (FAB⁻, diethanolamine) m/z 1099 [M(C45H₈4O₂2P₄)-1]. **Deprotection of 15c (three steps): 16c.** ¹H NMR (270 MHz, CDCl₃/CD₃OD, 8:1, partial) δ 2.13 (3H, s, lev CH₃), 3.09 (24H, br, NCH₂), 3.93 (2H, br, gly sn-H₃), 4.18 (2H, br, gly sn-H₁), 4.73 (1H, br, Ins H₄), 5.19 (1H, br, gly sn-H₂), 5.38 (1H, br, Ins H₆), 6.02 (1H, br, Ins H₂); ³¹P NMR [109 MHz, 82.6 mg, CDCl₃ (2.4 mL) + CD₃OD (0.3 mL)] δ -0.30 (1/2P), -0.18 (1/2P), 0.58 (1P), 1.30 (1P), 2.51 (1P). The phosphate-deprotected product **16c** (48.7 mg, 0.03 mmol) obtained in 88% by treatment with triethylamine as above was dissolved in CHCl3 (1.0 mL) and cooled to 0 °C and an EtOH suspension of HDTC (0.64 mmol) was added. The mixture was stirred for 4.5 h at rt and again cooled to 0 °C. After a work-up procedure similar to that as above, triethylammonium salt was dissolved in a small amount of CHCl3 and CH3CN was added to induce precipitation. Washing the precipitate with CH3CN gave 2-free product (31.4 mg, 68%): ³¹P NMR [109] MHz, 31.4 mg, CDCl₃ (2.4 mL) + CD₃OD (0.3 mL)] δ -0.30 (1/2P), -0.18 (1/2P), 0.58 (1P), 1.30 (1P), 2.51 (1P). The final procedure for removing the 6-levulinovl group was done according to the reported one.^{5,21} to give distearoyl-PI(3.4.5)P3 in 78% yield. Characterization of the compound was done by comparison with data of PI(3,4,5)P3 already obtained by a different route: ⁵ R_f=0.4 (CHCl3/acetone/CH3OH/AcOH/H2O. 25:12:13:7:10); 31 P NMR [109 MHz, 20.6 mg, CDCl₃ (2.4 mL) + CD₃OD (0.3 mL)] δ 0.98 & 1.01 (1P), 1.53 (1P), 2.36 (1P), 3.68 (1P). #### References and Notes - Berridge, M. J. Nature 1993, 361, 315-325. (1) - Whitman, M.; Downes, C. P.; Keeler, M.; Keller, T.; Cantley, L. *Nature*, 1988, 332, 644-646. Auger, K. R.; Serunian, L. A.; Soltoff, S. P.; Libby, P.; Cantley, L. C. *Cell* 1989, 57, 167-175. Duckworth, B. C.; Cantley, L. C. PI 3-kinase and receptor-linked signal transduction; Bell, R. M.; Exton, J. H.; Prescott, S. M. Ed.; Handbook of Lipid Research, Plenum Press: New York, NY, 1996; Vol. 8, pp 125-175. Talmage, D. A.; Freund, R.; Young, A. T.; Dahl, J.; Dawe, C. J.; Benjamin, T. L. Cell 1989, 59, 55-65. Watanabe, Y.; Hirohuji, H.; Ozaki, S. Tetrahedron Lett. 1994, 35, 123-124. Watanabe, Y.; Tomioka, M.; Ozaki, S. Tetrahedron 1995, 51, 8969-8976. - (3) - (5) - Sawada, T.; Shirai, R.; Iwasaki, S. Chem. Pharm. Bull. 1997, 45, 1521-1523. - a) Gou, D.-M.; Chen, C.-S. J. Chem. Soc., Chem. Commun. 1994, 2125-2126. b) Bruzik, K. S.; Kubiak, R. J. Tetrahedron Lett. 1995, 36, 2415-2418. c) Desai, T.; Gigg, J.; Gigg, R.; Martín-Zamora, E. Spec. Publ.-Royal Soc. of Chem. 1996, 180, 67-92. d) Wang, D. S.; Chen, C. S. J. Org. Chem. 1996, 61, 5905-5910. e) Aneja, S. G.; Parra, A.; Stoenescu, C.; Xia, W.; Aneja, R. Tetrahedron Lett. 1997, 38, 803-806. f) Grove, S. J. A.; Holmes, A. B.; Painter, G. F.; Hawkins, P. T.; Stephens, L. R. J. Chem. Soc., Chem. Commun. 1997, 1635-1636. - Toker, A.; Meyer, M.; Reddy, K. K.; Falck, J. R.; Aneja, R.; Aneja, S.; Parra, A.; Burns, D. J.; Ballas, L. M.; Cantley, L. C. J. Biol. Chem. 1994, 269, 32358-32367. - L. M.; Cantiey, L. C. J. Biol. Chem. 1994, 269, 32358-32367. Gaffney, P. T. J.; Reese, C. B. Bioorg. Med. Chem. Lett. 1997, 7, 3171-3176. Watanabe, Y.; Nakatomi, M. Tetrahedron Lett. 1998, 39, 1583-1586. Watanabe, Y.; Nakamura, T.; Mitsumoto, H. Tetrahedron Lett. 1997, 38, 7407-7410. Ling, L.; Ozaki, S. Carbohydr. Res. 1994, 256, 49-58. Ozaki, S.; Watanabe, Y.; Ogasawara, T.; Kondo, Y.; Shiotani, N.; Nishii, H.; Matsuki, T. Tetrahedron Lett. 1986, 27, 3157-3160. Whitesell, J. K.; Reynolds, D. J. Org. Chem. 1983, 48, 3548-3551. Chida, N.; Vamada, E.; Ogawa, S. J. Carbohydr. Chem. 1989, 7, 555, 570. - (15) Chida, N.; Yamada, E.; Ogawa, S. J. Carbohydr. Chem. 1988, 7, 555-570. - (16) Uhlmann, E.; Pfleiderer, W. Tetrahedron Lett. 1980, 21, 1181-1184. - (17) Seeberger, P. H.; Yau, E.; Caruthers, M. H. J. Am. Chem. Soc. 1995, 117, 1472-1478. - (18) Watanabe, Y. "Selective Reactions and Total Synthesis of Inositol Phosphates" in "Studies in Natural Products Chemistry, Vol. 18, Stereoselective Synthesis (Part K)" ed. by A. Rahman, Elsevier, Amsterdam (1996), pp. 391-456. - (19) van Boeckel, C. A. A.; Beetz, T. Tetrahedron Lett. 1983, 24, 3775-3778. (20) To avoid the undesired side reactions such as liberation of distearoyl glycerol, a reported aqueous medium (H₂O-EtOH-dioxane)¹⁹ was modified. - (21) van Boom, J. H.; Burgers, P. M. J. Tetrahedron Letters 1976, 4875-4878. - (22) Thayer, F. K. Org. Synth 1941, Coll. Vol. I, 12-13. - (23) The glycerol was prepared according to the procedure reported by Pfeiffer et al: Pfeiffer, F. R.; Miao, C. K.; Weisbach, J. A. J. Org. Chem. 1970, 35, 221-224.